2025.0% 04

compile-time checks for tile: shape ch anges
static parts of layouts but not stride

nested layouts aka modes:
subset of axes, have
specific semantics e.g. for

ihreads, tensor cores

layout algebra: composing

. . ?
Iay}:{utS (as projections?) tiling as dividing shape by shape>

(\ng compute\r@ or layout by ShapefEfamhtate working with tensor core)

\0 ee CUTLASS C++ CUDA T Tem : Iates for Lmear Algebra Subroutlnes *

(Python mterface\z__’l/vﬁﬁef code thanks to good default§
GuTe C++ CUDA Template brief but very informative error messages

Library for Tensor%t end to CUTLASS 3.0 \compared to C++ template compile error;

kernel layer

grid planning,
load balancing,
thread marshalling

layout = (shape) (stride),
concatenable ("multiply")

also with swizzle functors)

conceptual GEMM Hierarchy
collective

tom Iaye7 layer

(entered around
centered around optimal
hardware-accelerated

tlled MMA/Copy

Qlevice Ia@

use of a single GPU
\ops e.g. tensor core, _—

vectorop /~ KCEntered around
synchronization

20 25.03.05 @de of layout = axis = length-1 Iaycila

@;rdinate = |ogical po;ition in shape: natural
(aka h-D), or colexicogr. ordinal (aka 1-D), or

— T - mixed (sub-shapes -> ord.) (aka R-D, R=rank);
confusing: formalism and ,
L . natural coordinate = same (nested) tuple as shape;
default stride is column-major _ _ _
index = offset in layout (inner product of natural

lexi hical
{colexicographica)/< / Lcoordinate and stride) ——

(CUTLASS / CuTe layout algebra J)
[— p N :
o 3¢ Contiqued —

tuple-like and NumPy-like operations:

sublayouts (fully expressive),
concatenation, grouping, flattening, slicing

&ompleme‘@ (composition }
Qeft/right inverse) Iogicw

Zipped, tileg

logical divide

2025 .02, Db

B by itself has its image disjoint from A
except for position 0 -- because of disjoint
&coordinates when embedded in C=(A,B)

coalesced layout: remove modes (axes) of
size (dim) 1, remove modes that traverse
contiguously with the preceding mode:

(s0:d0, s1:s0*d0) --> (sO*s1, d0)

complement of Iayoutl wrt. size M:

. o layout B such that (A, B) (concatenated)
| sorted layout: St!‘lde/S) \is contiguous (dense) of size M;
are non-decreasing i.e. B fills the gaps of A due to strides

) 0 5t 6D i

_—

T — - composition is left-distributive
(functional) composition of layouts: . .
'R(c) := (A o B)(c) = A(B(C)) with concatenation, so focus on
/k_ E = (Ao B) Ct'_ ¢ \ @ with 1 mode

@has coordinates compatible with B) coalesce A and let B=N:r, then A o B has the

0 © (eTd) = e1<aod modes (dimensions and strides) from the
(sO: 0;&é31|' 1) _tS1 .1(t0t I1) middle of A with first and last mode
every cleme, 5" o adjusted, such that size(A o B)=N, and the

first stride = the corresponding stride of A *
(r / the cumulative size of modes to the left)

complement(A,M) has one more 2035 D3.07

mode than A: leading mode (d0:1)) (Tilers add expressivity via hierarchical layouts:

where d0 is leading stride of A; layouts: A o (B1,B2) = (Ao B1, Ao B2)
@(cept dO=1 same num of modes tilers: (A1, A2) O <B1, B2> = (A1 O B1, A2 o BZ)

h —

@ o B selects parts of A and reshapes them
~ Logical divide: ™~

(zipped divide: puts the iterator modes 5 , c\ / B := A o (B, complement(B, size(A%
o — er

coming from different pieces of the til \split A into elems pointed to by B, and the res
Qnto one toplevel sublayout -

& ule Iayoutalgeba z-odh'muu!

4ogical dividing by a tiler keeps in the hierarchical layout of A/B,
the hierarchical structure: (A1, A2) the first toplevel mode is the tile, and
Q <B1, B2> = (A1/B1, A2/ B2) the second is the iterator over tiles
ftiled ‘divid.e: put§ the intra-tile modes of ‘dividing by a multimode tiler:
the tiler pieces into one toplevel sublayout multidim tiles that look differently

@r different modes (axes) of A

Lgc::;ical product:
A x B := (A, complement(A, size(A)*cosize(B)) 0@
»

A is the tile, B is the number and order of repetiiions,
B needs to be designed for A;

A* is the available repetition layout
\
blocked_product simplifies this

raked_product disperses the tiles
-

layout<0>(zipped_divide(A, B)) =
layout<0>(tiled_divide(A, B)) = Ao B

logical_product is tricky because

26)S O oX

tensor slice: new non-owning tensor witrﬁ

tensor = layout + engine + [nonJowning offset iterator, and new (restricted) layout

engine = RAM iterator + mem tag
mem tag = global | shared | registers

partitioning: zipped_divide?hen slice;
- @ inner_partition, local_tile: give each

Thread-Value partitioning: a layout mapping o tFlI:ead oub a tile: J

threads + per-thread values to coordinates | -9: -g _ P ' - ,

- B outer_partiotion, local_partition: iterate

= / at fixed position / slice of the tiles

e

——

CuTe: tensors and algorithms)

— . — e o PE—

e —

/since CuTe can represen{ datatype, mem tag, - = . S

shape and stride at compile time, algorithms copy: the compiler-selected impl. may

- cre . : ‘need a specific explicit synchronization
can specialize to hardware-specific instructions) P P Y e

B
the type-inferred default copy_if: copy With a mask ’fen_Sft?D
impl can be overriden -

gemm: accumulating, one of: element-wise
— T product, outer product, batched outer product,
axpby: y := a*x+b*y (generalizes FMA)
/
- GULNEMILST - _
[f'"* Clear me:mory - fold an operation
transform: map in-place

matrix product; selected by a type param
(C++17 style)

F

LO2G 03%.4© (hardware instruction levels: fquadpair; kinda 8 thread tensor
- single thread (e.g. FMA) core, i.e. 4 QPs per warp;

vV~

- quadpair (Volta: V100) \QP 0 is threads 0-3 & 16-19 etc.
fnnemonlc: - single warp (Ampere: A100, RTX 30x0)
D:=A*B + C &_ warpgroup (Hopper: H100) not introduced, but much optimize@

K_———_@ 28 1D threads)

MMA and Copy atoms: expose —

specific PTX instructions with E specific PTX operation,
a unified, templated interface provide A,B,C,D types and layouts
/'simplest

uTe Matrix Multiply example: tiles

/N/K-major: ha?s stride 1 Eer threadblocks
ak

N

Eften represents inputs as
(

M,K),(N,K) rather than (M,K),(K,N) in the M/N/K mode aCTAs
///;.utﬂ :a_cﬂﬂrd = make_coord(blockIdx.x, blockIdx.y, _—):
@1591: gA = ldlocal_tile(mA, cta_tiler, cta_coord, Step<_1.,X,_1>1{1);

i —

@templated args €g. selects sublayouts except for pos
M=128 x bN=128 x bK=8/ { X for both cta_tiler and cta_coord
T - e e —

auto tA = make_layout(make_shape(Int<32>{},Int<8>{1}));

Tensor tAgA/tAsA = local_patition(gA/sA, tA, threadIdx.x);

example: independently
spcifying shared mem
layouts, partitioning
patterns,

PTX instruction copy(tAgA(_,_,k_tile), tAsA); cp_async_fence();
_ _ cp-async_wait<0>(); gemm(tCsA, tCsB, tCrC); __synctreads|();
via TiledCopy and —

builders take Copy_Atoms<...> / UniversalFMA<TC,TA,TB> and threads (and values for

TiledMMA | _ _
TiledCopy) layout(s), then TiledX.get_slice(threadldx.x) to extract tAgA, tAsA, tCsA...

20625.0% 24
'profiling compute ucket grads into concat
.and communication tensors for reduction

-~ - — ZeRO: 1 (optim. s-fates),
@p”ti"g @ C)verlap grad reduction 2 (+ grads), 3 (+ params)>

with backward pass

AK along hidden dim

data parallelism tensor parallelism

one GPU training

seuence parallelism:
along input dim

i ——

T ———

e ———__

The Ultra-Scale Playbook })
(Jable of Contents &=

expert parallelism
context parallelism
pipeline parallelism ring attention

Zig-zag ring attention

Zero Bubble and DualPipe

finding best training config

fusing, threading, mixed precision
step 1: fit step in mem

|
[U g Hhogh those

[0S, 03 .26 mask input on GPU to only compute
@Ocab embedding what's in the GPU's dictionary

"(\r\ (-—-) 0/\&‘/) - ”’lm_{‘/‘l /
(@b A ‘ 2 sxnrnly (Cand shift

split is best: first by

bolumns, then by rows ot/ Lelisins ; h | D=2
% O{O\J‘LL{ — 65* 0/'/‘/\ s 8
> | q k=2 79X
_ teuger = hiddolan dina i v [Q{
tenso:Parallel P "PL(,{'JVQ % '/L\C;;vlﬁ((ijgf A \O'D:,____,_..‘Z

~7 . B *--(process group manager)*
datamade{ PP*TP*DP selects subsets of GPUs for
grid of GPUs a given parallel schema

—

sets up one process per GPU)

ata parallel
distributed sampler

e e ———

all_ reduce to average gradients
dataparallel buckets

= —j

manual grad_acc in a temp var
to reduce at higher prec FP32

i _-""--._‘__

Grad accumulation: reduce

mem by not parallelizing

over the whole batch
\

	Mind map March 2025

