LOS 02 .0/

tinygrad decomposes them so there's reduces the scope of the tensor class
only “reciprocal’, but it's a slight loss a bit but tensors still have grad field

of expressivity (and convenience!)

Wrt. tO'IDOWG-""':”C (no need to centralize for that
. *—L e ——

in OCANNL it would be slightly “inspiring: instead of tracking backprop
harder to do complex gradients at the assignments level, track it at the
like "to-power-of" and "division® \ tensor expression level like in tinygrad

"'-—_

(I tlnygrad S centrahzed gradlent

)

/e get rid of the dlff_LnQn-diff distinction,

replace diff : diff option by mutable
diff : diff option, and type diff = ¢{ (it shouldn't reduce flexibility since
grad_ L zero_grads : asgns |} thenew grad. forward would

. - function like the old dif f.
we will still use the global session state:

to update the diff field

/i.e. there will still be an implicit set of differentiated roots;
|later, we could refactor that too

02 5. 0¢, Oa @cludes a mini primer on MLT@
/[

10 Be Co rmmec/

/

@LISS_ZOP Polyhedra-l PolyTOPS: Re:‘.onfigurable and
\Compilation lecture slides Flexible Polyhedral Scheduler
TiIing) \
_ — /T: topology with nodes
éop rusion and Fission) \ cols and buffers-rows

transformations of loop variables T v =0: no deadlock or

her A 40\ ' NSPCG.

@niz-ihg nested loops by affine | v: node firings

buffer overflow
v.> 0% : no starvation

polyhedra are a
technical detail

S

ISL: integer set |ib,.a,-yﬂ' schedule: map from timestamp . %ﬁ << wﬁ@g/ Q/
to iteration domain minimize: ¢, g ¢

)

— (using lexicographic order)) [|Subject to:

@struct a producer/consumer ?C X "’0{ N ?P@ Ny
dataflow diagram, reorder for _ . X . F
locality, and compactify buffers simpler -- synchronous datafiow:
by reusing alread-read cells + finds efficient, deadlock free schedules

- limited solutions:fp/t): Pe* X T O/P

optimal solving is too hard, and efficient - same amount of data at each node
code generation from a solution is too hard q: rate, d: dealy, p: producer, c: consumer

e

2024 2. 03

reuse)

temporal vs spatial Iocalit@

(cache Iir?%
)

ﬂalid schedule: dependencies

/

iteration domain per nesting depth

/iteration domain: space of all executions {,i;ﬁq //7
{of statements i.e. single-cell assignments JG‘(Q ,_.i,/
S
/ — oyt
schedule = maps iteration domain to ocj Py
execution times preserving lexical order Pay
_ Yo
: T . I *
Qoops introduce one dimension to the 55174
24_7‘-?

have lexico-positive distance,
&chedule Is invertible

7-—’—'.’—‘\\
on: invert the schedule;

' 2
a"yyqad)

éode generati

|

L(Gauss Elimination, Fourier-Motzkin)

I _,.f-_ i

lf' polhedral optimiz

Cayyel 7
PRy €ry e/

affine eqs. and ineqs. schedules invertible

statement sequences introduce
ne dimension per sequence at

O
Gesting depth ("unrolled loop")

Farallelism:

benefit
distance-0 — - —(°
’ denendences Q{R/éc/ (>~ Volere ; Q:/e@ otuyr diteg 0131
JEPE S der £€¢/wnq‘ag// aily] wq}?w}ﬁ AR

. _ HBde ooz

ﬂsion (whethhe sequence

ﬁptimizingrsch;“ciule: ILP using %‘ﬁ?euse: benefit

heuristic objectives (trying to approx.
performance on idealized hardware);
or discrete search with benchmarking
JITted solutions

Wwhen ILP, ensure invertibility e.g.
iteratively optimize over rows adding
.constraints to keep full row rank

S

| iterators from the last

dim difference is zero):
penalty for fissioned
- statements sharing a data
cell, OR penalty for fused
statements not sharing any

data cells o
Vectorization: penalty for iterator i

n the
fastest-varying array subscript and ’nc_)@
- —

|

accesses not using

schedule dimension

2026 02 . Oy

=4

ﬁequirements -- invertibility not necessarh
@gtatement can have multiple relations - all relations have the same iteration domain

It disjunctive conditions in control flow - union of relations of a statement covers the

,_[;__’___ iteration domain and is 1-to-1

change in a scheduling relation _- all dates are (vectors of) integers
= program transformation "plies Linpatr jndopendancy o diaencssas

decodes optimized scheduling relations |nto

_ encodes loop transformations as
XN updates of scheduling relations

FuseNext

fuses a loop with
its successor

Distribute
Interchange splits a loop in two

swaps loops at given 2 depths
in the given nesting

Reorder

changes
sequencing

scales the given output loop's
iterator by given factor

— ___

"High performance compilers for
parallel computing” M. Wolfe 1996

Reverse

reverses the iteration order
e given loop(s)

il

transforms not needed for decoding:
Interchange, Collapse, Linearize, Parallelize

moves given statements by
given amount in the given loop

Reshape

scales the given input loop's IndexSetSplit
iterator by given factor partitions a scheduling relation into two
disjoint ones, e.g. duplicates a loop with one

up to midpoint, the next from midpoint

StripMine
decomposes the given loop into 2 nested loops, with one
exec of the inner loop iterating for at most the given ste

Linearize Unroll/Parallelize

reverse of
StripMine

reverse of

IndexSetSplit Grain

Densify

not a real transformation, marks
the given output dimension for
unrolling or vectorizing

025. Q.65
qu - VILIR

TensorFIow repr.
XLA HLO

L

Po]yhedraI/Affine

l

Lowering |

nvgpu dialec
PTX specific operations

lHlvm dlalect

amdgpu dialect

ensor type) /memref type
dlalect dlalect views on arrays

Polyhedral" / for- Ioop lang

many improvements
over LLVM
| _

or linalg ops, especially convolution

GPU dialect {shape dialect)
with first-class loop rangeS/ | launching kernels shape inference
inalg dialect
ﬂlne dialect high-level hlerarchlcalgptlmlzatlon

A St ructured Abstractlon

/dl_alects are centrally
or externally

Transformation)
N—

ILLVM IR }

\

declarative general programming
language with namespaces, pattern

matching, rewrite rules |

typed Static Single Assignment,
functional: instead of Phi functions, blocks take arguments

7another glance at MLIR\ *
Multi-Level Intermediate Represnti

maintained extensions

48 dialects in
the repository

——

Fombined with C++
code (tricky rewrite
\rules, passes, trait

e.g. can define
syntax of

altogether 238 passes, e.qg.: linalg-fuse-
elementwise-ops, gpu-map-parallel-loops,
affine-loop-tile, convert-gpu-to-nvvm,

operations from
within op. def.

|

implementations etc.)

——
high-level support for H100:

convert-amdgpu-to-rocdl, convert-affine-for-
to-gpu, buffer-loop-hoisting, ownership-
based-buffer-deallocation, loop-invariant-
code-motion

nvgpu.mbarrier ops (Arrive/Wait Bariers),
nvgpu.tma ops (Tensor Memory Accelerator),

C\l_ipu warpgroup MMA ops

\

LePNG Seque<p.

nvgpu --> nvvm --> llvm --> PTX

- —>
' (symbolic) iterators: ¢

»(symbolic) constants: N
dependency S->R: statement S needs to

@ecute before R to preserve semantics

fvery clean formal setup of polyhedral
@ptimization, nice scheduler algo

tiling, skewing and intra-tile
optims are not done by ILP -->
postprocessing at each step

Supports
user-defined
constraints,
cost functions

(PolyTOPS builds ILPs one scheduling <'

dimensjon at a time, from outermost. " = — _
) T vy ¥ AutoVectorization: which loops
B t)e 85 sp D (i) b5 (&) -

L(:) > >R C}SRIL ~ Qby(‘ C should be innermost and unfused,

e

based on mem stride and accesses

—_ _
More efficient but doesn't encode ~_[predefined

global cost functions. —— ost funcs bigLoopsFirst: loops with
— __ £ . . . | :
eautrier: find sequential Iargest domains outermost

i

wly: Gonug U |ty: outer dimensions that carry the /

tembora T —— most dependencies -- enables

p_ Spatlal inner loop parallelism / —— ’____,_.——
locality locality vectorization F:Ilrectlves: specify that a loop should be i

parallel / vectorized / sequential, if possible
EeAeET I e

2005 02 07

@, Lisp, JS/WebGPU ruﬁﬁm%

renamed shape-inference
to type-relay, handles

shape, stride, iter spaces
(i.e. OCANNL's projections

has frontend but can also
H\I_oad ONNX graphs

7 o | —)
second glance at Caten

@ https://github.com/hikettei/Caten Z

Compiler Workflow Configuration (BYOC)

[Schedule Item]

m l Extract SCoP

Solving ILP Polyhedral IR

Tile all bands
Maxlmlze band depth

Microkernel Rules

<TensorCore (88 8) ... >

Caten Compiler End-to-end

Caten Framework
(caten/air)

High Level APls
(caten/api)

Decomposing

Y

(caten/aasm)

Scheduling
Y

Schedule Graph
(caten/codegen)

-

Extracting
SCoP

Polyhedral IR
(codegen/polyhedral)

_

Hardware Specific

4
Primitive Ops Graph

Configuration
(caten/byoc)

Optimization
Strategy

W

Generate

Optimized Code

Y

Rendering the bp
Into a target language

Y

£ “

Optimized
Kernel Code

£ N
Optimized Abstract IR
(codegen/blueprint)

" 7

e e

Microkernel
applied

Outermost band
parallelized

Sketch

Parallelize)<----

<Vectorize (8) ...>

<Upcast (8) ...>

Parallelism Rules

N_GLOBAL_DIMS=3

MAX_THREAD_SIZE=...

Maping each
band to

4

" Sketch
A

BEAM

Profiling o

\4

Abstract
Runtime

-

- Frontend

" Backend

S

parallelism

@ https://github.com/hikettei/Caten/pull/422 Z

202 _

5 02.0 B - @nd generation from Haskell to OC@
well documented: a manual, and a (-
tutorial on polyhedral compilation { ~— I —— :)

| might rewrite the bindings mcompahb@

from CamelCase to Snake_case
@ntlnuously smce mld 2@/ N / B /

\

actively developed, by Sven (— =
‘ P . y outdated bindings for OCaml,
Verdoolaege, until release of | /gistributed with a]

0.27 early September 2024 half-auto-generated

rltten in C easy to bind deeply

\Python interface

’£ o (OOP Oplhj et A Integer SetJLibrary) could be interacted with via

) binaries (tools) but currently |
three distributions / library options / prefer to mtegrate more tightly

— T ——

: Cintegrate auto-tuning>
isl: the core polyhedral

barvinok: dynamically-
typed domain-specific
programming language;
tool iscc

manipulation and
solution / optimization

Ery to figure out integrating inlining
and memory mode decisions, so

we get rid of code interpretation
on the "‘pure” OCANNL side

/pet: extracting (part of) a
polyhedral model from C code

S

2005, -

0. 1, (1:instructions and producer-

2: computation order; iteration

inlining

consumer dependences

‘ writte-:nﬁin C++
(handles sparsity

integrated with ISL to for

axample express ASTs for : — — _
UDA; Halide IR is used Tiramisu polyhedral compiler

for CPU ASTs handles recurrent NNs

@tively developed May 2016-Feb 2023 and cyclic dataflows |
"A Deep Learning Based Cost Model fo OptlmIZES distributed code

Automatic Code Optimization”

space transforms (e.qg. tiling);

architecture (GPU, distributed)
"\ -

@—memkla_y:)ut; buffer al@

4: sync and comms, within
and between architectures

4 layer IR: algorithm,
computation, data,
communication

4

via skewing

Q
QOO
S _
S OO
. QO
_ _ .

. . = - [LSTM | | LSTM |
GBS, 6 - = a
Q0 010, - @, QOO

GO0 000 AL Ad OO0 — —
A B ooemes ommms ©
C D
(a) Processing the program presented 1n Figure | through the three layers of the (b) Loop embedding unit.

cost-model.

"add extra tiliﬁg to previo W 2025 02 19 - 13 | RAltI:I;::G I
S

if it enables more choice add inner tilings (opt; SRS e —

T vectorlzed / SIMD), (2 B | I
)&)’mpute and storage granularlty — tree search IEELTIN

 outer tilinas (opt. random Halide I8 ¢ %007
how many loops to fuse, memory gs (op Igorith hedul

keuse fusm all loops = inlining parallel threads); total
/LZn steps for nlayers

fine-tune with autotuning
iterates throu h networ — E— learned
J (shoosing each tile size) SRS perlotmance
layers from output guides

importalnce ‘
sampie
G)eam search: top-k :
ut Halid tree search
or each step ‘algorithm mat on schedules direct

search optimum

AUTOSCHEDULING

' Learning toptlmlze
Halide with Tree Search

)
implicitly assume unscheduled layers are
inputs; when interdependent, assume max

ocality and dense vector loads (optimistic)

I
pruning: limit search space, e.g. loops

~/ compute->storage should be single-
dimensional (best results for line-buffer)

search: here Halide (2019), |
next time Tiramisu (2021)

Y,

see figure fror;l yesterday

heuristic instead of search: loop unrolling, — —
no nest reordering except vector dims ﬁ:oarse-to-fine: diversify the beam by\

pushed inside, memory space selection prioritizing one representative of a loop nest

oon nost clasees, whth finer aubelasues
cost model and runtime To Be Continued . .
Eop nest classes, with finer subclasses

_#—

@gorand schedule features,)computed statically: 2025021y

- histograms of operations to compute a single point region shapes via symbolic
- Jacobians of input/prev-stage acesses wrt. loop interval arithmetic

dimensions (non-constant ignored assuming worst case)

- count of evaluations of a region, of allocations of (a small cost network:
storage for their result, of accesses of this storage: both features -> coefficients for
in bytes and in contiguous segments simple manual heuristics
- number of parallel tasks launched Lalso built out of the features
- number of whole SIMD vectors computed, and of the o
corresponding scalar values i ,
beam search with "dropout”:

- number of dense vectors and scalars loaded per vector

_ _ expand k-th best w/prob pk
computed (amortized over sharing by unrolled loops) |

e G)retrained on random algos / networks

p—

Halide program \
| search optimization 6utotune: benchmark end-of-beam candidates

finetune: update model while beam-searching
\

£0¢0S5.02.16

euristic / not optimized:
parallelization, vectorization

searches for a sequence of
transformations: fusion,
tiling, interchanges, unrolling

recursive NN over a loop embedding:
combines outputs of LSTMs

/I_(;;p children:
USTM over loop

transformations

_hl

-
I
o
O
[®
|._I

Transformations applied on loop 1

-
[
O
O
©
-

ransformations applied on loop j

__
-
O
O
O
=

v
Loop Nest Vector

Transformations applied on loop m

- -

. Memory access 1

Memory access 2
Memory access 3

Computation Vector

l\...._._-‘ aa . - -

emaory access

v
\
Assignment Vector

ition A B

Me
Operations count

C D

Program tree representation. (c) Computation vector.

statement children: —
LSTM over computation vectors

—

computation vectors composed of loop
nestings including loop transformations,
and memory accesses, but padded to 1235
dims for feedforward NN embedding

20026.072. 16 "the machine FMA is accumlating!

Si'lroehny, com / c := a*b + c; FMA = fused multiply
_ _ ~add = MAC = multiply accumulate
ﬁuies vectorized FMA instructions}
I

ntel's MKL has dedicated C:PUS are compute Pound;
SGEMM functions / kernels even for small matrices
for each mlcroarchltecture ;
march=native specmhzes C compiler's
Cutput to microarchitecture it compiled 03

SGEM = smgle preC|S|on
general matrix multiply:
*A*B 4 b'kC /

.--"'.J-
—

/', matrix multlpllcatlo)

jfblg gain from loop reordering:
non-contiguous iterator

Kshould never be innermost
ﬁiling on much better than assigning
multiple to a register in innermost loo
dimensions
\ multithreading stra@
(——

ﬁs two elementary loop tile rows of A and columns
of B so that there's no need

to communicate except to
gather the results

~

tiling the reduce loop
(middle) with outermost

_replication f \#

//'\-—h —
idea: tile width so that a single tile

Iof the reduce loop fits in cache; in
practice the best size is bigger

transforms: strip-mine
@nd reorder

02S.02 . /we implement EMA / MAC: /no change in assembly, access coalescin
Fa C:=alpha A@B +betaC at runtime, requires aligned access;

—1 B . : . 1 :
cuBIjAS —— 'kernel 1: each cell of C Qompller does partial inner loop unrolling
doesn't use a separate thread doing

'tensor cores, only /| | reduction, thread ids

u TF32 and BF1 6 end up increasing along
columnsgf C: 1.3% eft.

(kernel 2: ensure thread ids increase>

s,

along rows of C; 8.5% eff/

o - —
kernel 3: threads first populate

/ shared mem, then sync, then

atrix multiplication in CUDA reduce the shared mem block;
without tensor cores 12 _ -

8% eff
(o Be Con ti MQ-J /j

__..-"'.-_—-__

it's a strip-mining of the reduce loop, but
tricky as pure loop transforms -- kinda also
strip-mining of A and B's non-shared axis
(into block-parallel and thread-parallel) and
promoting tiles to shared mem
/kgrﬁgl 5: also strip-mine
, kernel 4's thread-parallel B|(__syncthreads separates two implicit
ﬂ J____ loop to new innermost non-)/thread-parallel loops, but logically the
'why does the strip-) parallel loop; now too few/(thread-parallel iterators are different

mining halve threads/ |threads wrt. tile size: (the first loop's iter for A becomes the
smem copy Ioops 87 (innermost non-parallel loop for A

should Be E:Bmpute
bound if well designed

kernel 4: kernel 3's thread-parallel A loop
——ﬁ

strip-mined to new innermost non-parallel
loop, smaller tiling of reduce loop than

kernel 3 to lower smem; 36.5% eff.

combats shared mem
access bottleneck

per threadblock?/
SIGoCAM, LOU o

ZO 2 S O 2. 4 g Q(ernels 7 and 8: shared-mem bank coﬂ@
SLO‘OQV\M.COM -

kernel 9: autotuning:

how much data cached:

- from global to shared mem

- from shared mem to register file

I.e. local mem

(’I@rnel 6: transpose a tile of A while copying to

shared mem,; vectorize copying via
reinterpret_cast<float4 *>;78.4% eff.

[kernel 10: V\;arp_);iling: GPU
N
--GMEM-to-SMEM-> SM
--SMEM-to-RegisterFile-> Warp
--RegisterFile-to-core-> Thread
Qach level of tiling is: strip-
mining, reordering, preparatory
loops for mem level transfer

(sometimes with transpose)

e ———

Levels of par;ilelism:
- blocktiling: different Streaming

Microprocessors, syncing and
shared mem within tile

- warptiling: different war - N)
/ arptiling: different warp _ @UDA compiler can do the ILP vectorization
schedulers, mem bank benefits, —

warp-level ops (eg. tensor cores) .
- threadtiling: Instruction Level kernels 11 and 12: double buffering

Parallelism

S —

2025.0p 49 nomenclature: ____

[. .

. o« ‘\kKernel 1 is identical —
Seb ~v. 4 iCaus. (o to CUDA" 3.3% eff. Compute Unit = Streaming Multiprocessor
/L Stream Processor = CUDA Core

'kernel 2: LDS tiling; square wavefront (32 or 64) = warp (32 threads)

As, Bs 32x32 of A / B, strip-)|| Workgroup = block
mines reduce dim and Local Data Storage = Shared MEMory

reorders, loads the tiles As)) {The programming model is almost the
Bs w/ transpose into LDS same, uses the same keywords e.g.

along rows of A, B; 13.1% eff. ——shared__.

like before, we do
C:=a*A*B + b*C
\In FP32 prec.

32*4 (b/c FP32)
= 128 bytes
mem transaction

e e

(_ arx multiplicaon AMD RDNA3 GPUs |

P W

——r—

i(:___ernell 3: register tiling adds 2 (3) more tiling) [the wave tile is composed of 2x2 subtiles
levels: 1-per-thread increases arithmetic 'sized 8x4 that each fit in a wavefront /
complexity and 2x2-per-wave enables (8*4=32) (why?) doesn't prevent mem =
vectorized mem transfers; loads a col,row of bank conflicts b/c accessed contiguously?,
LDS tile to registers to reduce, strip-mines

—

%oth tiledims, —
_ k)

—

also unlocks v_dual_fmac_f32: parallel

6@15 15 ’“/7\ Slof 32(‘?‘/ CCW%?“ vector multiply-accumulate operations
kernel 7 from siboehm.com prevents bank - — S —
conflicts by dispersing consecutive Bs, so on ! I don't see how kernel 8 from —

. e —)
reading to regs they're from the same bank siboehm.com prevents bank conflicts?,

5%_/,!?2 Lo e ge)V/’(S O)%’vp Ul \Aple adss ov ;MG&'QQ_.F

H

thile some threads queue for Ioadiﬁg
from GMEM, others continue computing

] _

kernel 4: double buffering; load the next
block's GMEM data into registers at the
beginning of a step; sync at end of step
and write to SMEM: also adds unroll

pragmas; 83.7% eff.

needs __launch_bounds__ ,_oth@ . Lc. , 9. |
uses scratch mem instead of registers
2 Ernel 5: bank conflicts --> adds padding to
A

o __—-'_-"Il-._

——

'-lﬁ

matrix uItipIication on AMD GPUs:)
\ double buffering and bank conflicts

kernel 11 from siboehm.com: unlike kernel
4 above because loading always from

GMEM to SMEM, doubles the size of SMEM
buffg_[s and alternates the halves

s rows (smem tile of A) so that accesses
are staggered: original BM%32=0, new
(BM+4)%32=4 no same-thread same-bank
conflicts;
arithmetic intensity --> 2x wider wave tile;
adds - cumode (each SIMD32 sticks to its

own LDS); 109.8% eff. B
(S

theoretically close to 200% eff. might
be possible because for unknown
reason rocBLAS is not using
@al_fmac: 2x multiply-accumulate ops.

T0 8¢ Contwmed
kernel 12 from siboehm.com: uses

cuda::memcpy_async with a
cooperative_groups barrier, with double size
buffers; compiler can better use available
hardware: copying can happen in parallel to
all computations

|

homenclature:
HIP = CUDA
ISA = SASS (assembly)
AMDIL / ROCm llvm IR = PTX

—

'matrix multiplication on AMD GPUs:
sfrom HIP to ISA =

|

(kernel 7: loop unrolling; didn't work with the
HIP implementation b/c the compiler
prefetched more values from the LDS; now
just duplicate ISA loop body with address

'increments, remove branch instructions;

[135.1%eff. /7~

kernel 8: batched GMEM loads; precompute
global load offsets into scalar registers (saving
on vec registers); in the loop, update A,B index
vec registers, global_load_b32 output-req,
index-reg, offset-reg format; spread the loads
accross the unrolled inner loop; 160.6% eff.

fernel 6: optimize vector arithmetics using
R

v_dual_fmac_f32: maximize number of vec
registers read per instruction; maximize use
of cache; maintain a consistent symmetric
access pattern; don't worry about

contiguous use of registers: reorder before)
writing to LDS 3

e

kernel 6 details: ensure C_regs
contiguous, assign A_col and B_row
to non-overlapping banks (0-1 and 2-
3), update LDS loads and inner loop
v_dual_fmac accordingly, permute
registers as needed by code writing
to global memory; 123.7% eff.

—
remaining possible optimization;

double buffering for LDS

this approach is not scalable

but gives insight into optimal
execution on RDNA3

2025.02. (OpenAI, Anthropic etc. use their owny
& web crawlers and data /|

FineWeb-Edu: 1.3 trillion and 5.4
trillion tokens (very) high quality

filtered by "educational content” classifier
distilled from Llama-3-70B-instruct
@pted to focus on grade/middle-school

B,

'Common Crawl is a non-profit org
extracting data for researchers;

currently over 250 billion pages;
new crawls w/ 200-400TiB text

_

r ineWeb is derived from
96 CommonCrawl snapshots;

every 1-2 monthsf

T—

441B

data qu;iity: train small models and
evaluate on early-signal benchmarks

ommonSense QA, HellaSwag, OpenBook QA,
PIQA, SIQA, WinoGrande, ARC, MMLU

filters from C4 dataset:
no 'lorem ipsum" and
no curly brackets

Elen

deduplicating: MinHash
based: 5-garms, 112 has
functions, 14 buckets; 0.85
similarity -> 98.8% discard

docs with fraction of lines ending
within-snapshot only; cross-)| with punctuation > 0.12; docs

snapshot-repeated data has with fraction of chars in

_ _ duplicated lines > 0.1; docs with
higher quality, global dedup fraction of lines shorter than 30

upsamples bad quality chars < 0.67

é}od\g. _ has 15 trillion tokens;

CommonCrawl text extraction (WET) is
poor quality; but text extraction is costly

(base fllterlng URL blocklists;

C4 dataset iri:spired filters;

e i Y

English only (fastText classifier);
repetition filter (many repeated
lines); filters from MassiveText
used to train Gopher); 36T tokens

assiveText filters: docs between 50

and 100K words, mean word length from 3 to
10 chars, hash|ellipsis-to-word ratio < 0.1;
less than 90% lines bullet points; less than
30% lines end with ellipsis; 80% words
contain alphabetic char; contains at least 2
of: the, be, to, of, and, that have, with

	Mind map February 2025

